31 research outputs found

    Experimental study of impact on SMC composites used in the automotive industry

    Get PDF
    The signal from a piezoelectric sensor received by a data acquisition system was used to record the temporal evolution of the force transmitted by an impactor on specimens of an SMC composite. A high-speed motion analyser recorded the sequence of images of the impact and fracture of the material. The subsequent processing of this sequence using an image analysis programme provided data for the calculation of various energy magnitudes. The behaviour under impact of this material was then characterised on the basis of these energy magnitudes and the temporal evolution of the force.Spain’s Ministerio de Educación y Ciencia project DPI2002-0284

    A Market-Based Analysis on the Main Characteristics of Gearboxes Used in Onshore Wind Turbines

    Get PDF
    Even though wind energy is one of the most mature renewable technologies, it is in continuous development not only because of the trend towards larger wind turbines but also because of the development of new technological solutions. The gearbox is one of the components of the drive train in which the industry is concentrating more effort on research and development. Larger rotor blades lead to more demanding requirements for this component as a consequence of a higher mechanical torque and multiplication ratio (due to lower rotational speed of blades while the rotational speed on the generator side remains at similar values). In addition, operating conditions become increasingly demanding in terms of reliability, performance, and compactness. This paper analyses the different gearbox arrangements that are implemented by manufacturers of onshore wind turbines, as well as their market penetration (including different aspects that affect the design of the gearbox, such as drive train configuration and turbine size). The analysis carried out shows a clear convergence towards gearboxes with three stages. However, there is a noticeable diversity in the types of gears used, depending to a large extent on the preferences of each manufacturer but also on the nominal power of the wind turbine and drive train configuration

    On the Analysis of the Contact Conditions in Temporomandibular Joint Prostheses

    Get PDF
    Temporomandibular joint replacement (TMJR) is a complex surgical procedure in which the artificial joints available must assure the anatomical reconstruction and guarantee a good range of the natural temporomandibular joint (TMJ) movements. With this aim, different types of TMJ prostheses, including the stock prosthetic system and custom-made prostheses, are being currently implanted. Although temporomandibular joint replacements (TMJRs) are expected to accomplish their function during a number of years, they might actually fail and need to be replaced. This paper analyzes different design factors affecting the contact stress distributions within the TMJ prosthesis interface, which are consequently involved in their deterioration and final failure of the prosthetic device. With this purpose, a numerical model based on finite elements has been carried out in order to evaluate the stress states attained in different prosthesis configurations corresponding to general types of TMJ prostheses. On the other hand, the actual degradation of resected implants has been evaluated via optical microscopy. The linkage between the numerical simulations performed and experimental evidence allowed the authors to establish the different wear and damage mechanisms involved in the failure of stock TMJ prostheses. Indeed, the results obtained show that the contact stresses at the interface between the mandible and the glenoid fossa components play a key role in the failure process of the TMJR devices

    On the study of the single-stage hole-flanging process by SPIF

    Get PDF
    Recent studies show the capability of single-point incremental forming to perform successfully hole-flanging operations using multi-stage strategies. The aim of this work is to investigate the ability of the SPIF process to perform hole-flanges in a single stage, contributing to a better understanding of the formability of the sheet in this demanding situation. To this end, a series of experimental tests in AA7075-O metal sheets are performed in order to evaluate the limiting forming ratio. The physical mechanisms controlling sheet failure during the process are analyzed and discussed. In the test conditions studied this failure is postponed necking followed by ductile fracture in the wall of the flange.Ministerio de Economía y Competitividad DPI2012-3291

    Preliminary investigation on homogenization of the thickness distribution in hole-flanging by SPIF

    Get PDF
    A drawback of the hole-flanging process by single-stage SPIF is the non-uniform thickness obtained along the flange. Multi-stage strategies have been used to improve it, however they increase notably the manufacturing time. This work presents a preliminary study of the tool paths for a hole-flanging process by SPIF in two stages. An intermediate geometry of the piece is proposed from the analysis of the thickness distribution observed in previous single-stage process. A simple optimization procedure is used to automate the intermediate part design, the NC code generation for the tool path and the validation of the optimal forming strategy by means of FEA

    Recent Approaches for the Determination of Forming Limits by Necking and Fracture in Sheet Metal Forming

    Get PDF
    Forming limit diagrams (FLD’s) are used to evaluate the workability of metal sheets. FLD’s provide the failure locus at which plastic instability occurs and localized necking develops (commonly designated as the forming limit curve - FLC), and the failure loci at the onset of fracture by tension (FFL) or by in-plane shear (SFFL). The interest of metal formers in controlling localized necking is understandable because the consequence of plastic instability is an undesirable surface blemish in components. However, because under certain loading conditions fracture can precede necking in sheet metal forming processes, there is a growing interest in characterizing the forming limits by necking and fracture in the FLD’s. This paper gathers together a number of recently developed methodologies for detecting the onset of local necking and fracture by in-plane tension or in-plane shear, and discusses their applicability to determine experimentally the FLC’s, FFL’s and SFFL’s.Ministerio de Economía y Competitividad DPI2012-3291

    Numerical explicit analysis of hole flanging by single-stage incremental forming

    Get PDF
    The use of Single-Point Incremental Forming (SPIF) technology in hole flanging operations using multi-stages strategies have been widely studied in the last few years. However, these strategies are very time-consuming, limiting its industrial application.In a very recent work of the authors, the capability of SPIF process to successfully perform hole-flanges using a single-stage strategy has been experimentally investigated. The aim of the present work is to develop a numerical model of this process to beable to predict the sheet failure as a function of the size of the pre-cut hole. The numerical results are compared and discussed in the light of experimental tests over AA7075-O metal sheets with 1.6mm thickness.Ministerio de Economía y Competitividad DPI2015-64047-

    Tube Expansion by Single Point Incremental Forming: An Experimental and Numerical Investigation

    Get PDF
    In this paper, we revisit the formability of tube expansion by single point incremental forming to account for the material strain hardening and the non-proportional loading paths that were not taken into consideration in a previously published analytical model of the process built upon a rigid perfectly plastic material. The objective is to provide a new insight on the reason why the critical strains at failure of tube expansion by single point incremental forming are far superior to those of conventional tube expansion by rigid tapered conical punches. For this purpose, we replaced the stress triaxiality ratio that is responsible for the accumulation of damage and cracking by tension in monotonic, proportional loading paths, by integral forms of the stress triaxiality ratio that are more adequate for the non-proportional paths resulting from the loading and unloading cycles of incremental tube expansion. Experimental and numerical simulation results plotted in the effective strain vs. stress triaxiality space confirm the validity of the new damage accumulation approach for handling the non-proportional loading paths that oscillate cyclically from shearing to biaxial stretching, as the single point hemispherical tool approaches, contacts and moves away from a specific location of the incrementally expanded tube surface.Junta de Andalucía (Consejería de Economía y Conocimiento) US-1263138Fundação para a Ciência e da Tecnologia of Portugal UIDB/50022/202

    Optimization of hole-flanging by single point incremental forming in two stages

    Get PDF
    Special Issue of the Manufacturing Engineering Society (MES)Single point incremental forming (SPIF) has been demonstrated to accomplish current trends and requirements in industry. Recent studies have applied this technology to hole-flanging by performing different forming strategies using one or multiple stages. In this work, an optimization procedure is proposed to balance fabrication time and thickness distribution along the produced flange in a two-stage variant. A detailed analytical, numerical and experimental investigation is carried out to provide, evaluate and corroborate the optimal strategy. The methodology begins by analysing the single-stage process to understand the deformation and failure mechanisms. Accordingly, a parametric two-stage SPIF strategy is proposed and evaluated by an explicit Finite Element Analysis to find the optimal parameters. The study is focused on AA7075-O sheets with different pre-cut hole diameters and considering a variety of forming tool radii. The study exposes the relevant role of the tool radius in finding the optimal hole-flanging process by the proposed two-stage SPI

    Experimental Study on the Evaluation of Necking and Fracture Strains in Sheet Metal Forming Processes

    Get PDF
    In this paper the formability of AA2024-T3 metal sheets is experimentally analyzed. For this purpose, a series of StretchBending and Incremental Sheet Forming (ISF) tests are carried out. The former tests allow determine the formability limits through the evaluation of necking and fracture using the optical deformation measurement system ARAMIS® and measuring the thickness strains along the fracture line. The latter are performed with the aim of confirming the validity of these limits. In this case, the spifability, formability in Single Point Incremental Forming (SPIF), was studied in the light of circle grid analysis by means of the 3D deformation digital measurement system ARGUS®. Different punch diameters are used in both processes. The results exhibit the importance of the accuracy in the setting of the formability limits as well as the variability that these limits present depending on the forming process or some variables such as the tool radius.Ministerio de Ciencia e Innovación DPI 2009-1333
    corecore